
j, dimensionless diffusion flux onto wall; Ks, rate constant of surface chemical reaction; 
Kv, rate constant of volume chemical reaction; t, time; X, distance from wall. 
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ELECTROTHERMAL ANALOGY IN HEREDITARY MEDIA AND ITS APPLICATION 

I. A. Novikov UDC 536.2 

An electrothermal analogy (ETA) is established for the most common media 
with a thermal memory. The problem of intensifying thermal perturbations 
in a system consisting of a plate and a semiinfinite body is examined. 

It is currently possible to distinguish a broad range of nonequilibrium physical phe- 
nomena in which heat transfer processes cannot be adequately described on the basis of the 
linear Fourier gradient relation. These cases include the following: heat transfer in liq- 
uid helium [i, 2]; heat transfer in media with energy carriers having a low concentration 
(in low-density gases [3]); heat transfer at low temperatures in crystals and semiconductors 
by second sound, ballistic phonons, etc. [4-7]; transport phenomena described within the 
framework of a two-temperature model (in a nonequilibrium gas [8], hot electrons in semicon- 
ductors [5, 6]). Mastery of thin-film and laser technologies also requires that allowance 
be made for memory effects in heat transfer. Similar problems are even more important in 
mass-transfer processes, where the relaxation time of the processes is several orders greater 
than in the case of heat transfer. For example, the study [9] described lag effects in vari- 
ous forms of mass transfer (adsorption, drying, heterogeneous catalysis, diffusion processing 
of porous bodies). Besides transport processes under extreme conditions, it is also possible 
to see deviations of heat transfer from the Fourier relation under normal conditions for me- 
dia having a complex structure (polycrystalline materials, polymers, liquid crystals, etc.). 
Thus, a relaxational effect has been observed [i0] in the high-temperature heat capacity of 
tungsten, this effect being due to the existence of high concentrations of point defects in 
the metal. The above-mentioned classes of phenomena and materials can be described at the 
phenomenological level in terms of heat transfer in hereditary media on the basis of integral 
governing relations (GR) [ii, 12] with relaxation functions (RF) Iz(t), cl(t) for heat flux 
and internal energy. These functions account for the history of the thermal process. In 
the particular case of RFs of the form I l = i - exp(-t/T0); cz(t) T H(t), the GRs [ii, 12] 
describe the hypothesis of relaxation of the thermal stress q + ~0q = -10Vu, leading to a 
hyperbolic heat-conduction equation. The Maxwell relaxation time t 0 in solids at normal 
temperature has the value 10-9-10 -11 sec [13]. Thus, its effect on heat transfer should be 
considered when a material is subjected to a laser pulse of nanosecond duration [14, 15]. 
At low temperatures, ~0 may increase by several orders [5] and have a more significant el- 
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fect on heat transfer in the material. The author of [16] used GRs to describe the transfer 
of heat (and momentum) in polycrystalline metals in an approximation employing several re- 
laxation times. There is also a class of heat and mass transfer processes [in disperse media 
(DM)] in which lag effects (a memory) [17-21] is manifest due to a difference in the thermo- 
physical characteristics of the materials comprising the DM. In the description of nonsteady 
transport processes in DMs, these effects appear as asymptotic corrections in the region of 
large values of time. 

Apart from the possibility of describing the phenomena discussed above, interest in 
heat-conduction processes in media with a thermal memory (hereditary media) stems from the 
existence of new physical effects in these substances (the existence of two classes of media 
with finite and infinite rates of heat propagation, the possible existence of weakly absorb- 
ing and intensifying thermal media, etc.) which are not observed in normal linear thermal me- 
dia [12, 22, 23]. Particularly interesting is the class of Maxwell media (with a finite rate 
of heat propagation), where wave properties are manifest to the greatest extent in heat pro- 
pagation. Thus, it is necessary to introduce new concepts and ways of thinking into thermal 
physics. With this in mind, here we introduce an electrothermal analogy for nonsteadypro- 
cesses in the most common thermal media (mediawith a thermal memory). The effectiveness of 
the analogy is illustrated in the solution of a specific problem. 

As is known (see [24, 25]), the equations describing the propagation of electric current 
i(x, t) and voltage e(x, t) in a two-conductor line has the following form in the region of 
the originals and the transforms (with i(x, t) = e(x, t) = 0 for t 5 0): 

( L + +  R )  i =  Oe , ( L p + R ) I  O__E 
Ox ' Ox ' 

Oi OI 
(C O + G  e . . . .  ; ( C p + G ) E = - -  . 
\ Ot Ox Ox 

(1) 

Here, L, C, R, and G are the inductance, capacitance, resistance, and leakage per unit length. 
Equations (i)lead to the following general form for the transforms of voltage E and current 
I [24]: 

E (x, p) = E (0, p) ch h (p) x - -  I (0, p) Z (p) sh h (p) x; 

I (x, p) = I (0, p) ch h (p) x - -  E (0, p) Z -~ (p) sh h (p) x; ( 2 )  

]/rLp + R . 
z (p) = V c-F-d-+ , h (p) = -V+Lp, + R)(Cp + C). 

Here, Z(p) and h(p) are the characteristic impedance of the line and the wave propagation 
factor. The concepts introduced in Eqs. (2) make it possible to effectively analyze differ- 
ent physical phenomena in lines. 

For media with a memory, the GRs [ii, 12] and the equation of conservation of internal 
energy for the unidimensional case (when the energy source is proportional to the temperature, 
while u(x, t) = q(x, t) = 0 at t <_ 0) can be written in a form analogous to Eqs. (i): 

Ou Q OU 
q = - -  koK ~ - ;  --  _ _ ;  

Ox ~oPA1 (P) Ox 
:=>- 

K ~ - - ~  - -  rl  tt - ; = - -  - - ,  
, Ox ao Ox 

K~ &---L = ~,~ (0) ou (x, t) + I" ~ (-c) ou (x, t - -  T) 8,; 
Ox Ox ,I 8x 

0 

(3) 

-- a 0 K Oa Ou(x, t) +,i'c~(~) Ou(x, t ~) d~; ro---- r~ 
Ot = c~(O) Ot o Ot " ~ o  ( 3 a )  

are integral operators of heat flux and internal energy with the corresponding RFs. It is 
evident from comparing Eqs. (i) and (3) that the replacement of the transforms E and I by U 
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and Q and substitution of the operators 

Lp + R=>- [~-opA~ (p)l-~; Cp ~ ~'~ p2C~ (p); G = ~  - -  r~ 
r o 

(4) 

sets up a formal correspondence between the equations of heat conduction in media with a 
memoryand the equations of a two-conductor line, i.e., an electrothermal analogy is estab- 
lished. As in the case of the two-conductor line, double application of the Laplace trans- 
form to (3) with respect to t and x (with allowance for zero initial conditions) and subse- 
quent reversion to the region of the originals with respect to x yields the transformation 
of the general solution of planar one-dimensional problems of heat conduction [26]. The 
transformation can be written by analogy with (2), where E(x, p), E(0, p), l(x, p), I(0, p) 
are replaced by U(x, p), U(0, p), Q(x, p), Q(0, p), while the thermal independence Z(p) and 
the thermal wave propagation factor are: 

z ( p )  - 
i S (p) 1 ( V / p~ [ C~ (p) r. i --~ ] ~/~I (P) )--1 

(s) d Ko (p) = p~C~ (p)-- to. 
pAz (p) ' 

h (p) = Ko ( p ) / - 1 / ~ ;  S (p) = [pA~ (p ) ] - ' ;  ?o = "l/~-og~Co �9 

Characteristics were introduced for all media with a decaying memory (including normal Fourier 
media) and for the case of hyperbolic heat conduction equation (standard Maxwell medium). 
It is evident from (5) that the thermal impedance of the medium and propagation factor depend 
on the medium's equilibrium thermophysical characteristics and the properties of its memory. 
In media with a memory, the function K(p) = Ko2(p) (the analog of h2(p) in the two-conductor 
line) is the sum of a second-order polynomial (for Maxwell media) or a first-order polynomial 
(for Fourier media) in p and one or several partial fractions [23, 26]. Thus, at IPl + ~ in 
the right half-plane, h(p) and Z(p) satisfy the condition of transformability [12]. In re- 
turning to the originals, this allows us to employ a nonlinear substitution of variables and 
the associated properties [27]. 

In the special case of a normal (standard) Fourier medium Xz(t) = cz(t) = H(t), with 
the source being proportional to the temperature, the ETA takes the familiar form: L = 0; 

R = ~0-I; C = p0c0; G : -rz; h(p) = (i/a4~0) ~p - r0; Z(p) = [~0 p -~0] -l. 

In the case of a standard Maxwell medium (hyperbolic heat conduction equation), the ETA 

takes the form: L = x0/k0; G = -rz; R = X0-z; C = p0c0; Z(p) = 1/70/x'0 + il + r0T0)/( p - r0) ; 

h(p) = (i/~)~0p 2 + p(l - r0x 0) - r0. It was first established in [28]. A hyperbolic 
equation for temperature u can be written by introducing effective thermophysical character- 
istics: 

a e f  = ao/~]o; %ef = %t~o; % f  = ro /%;  ~o = 1 - -  %%;  

a2u (6) Tef a2u ~ ~ au ref U --~0. 
G ef Ot2 aef 0t G ef ax2 

It is evident from (6) that laefl > a0; here, the case of negative diffusivity is possible 
(with r0 > l/T0). In essence, this means that the coefficient with the derivative 8u/St 
changes sign and that this term proves to have a reinforcing effect on the propagating tem- 
perature field. By analogy with an electrical circuit, we can also introduce a concentrated 
thermal resistance. The latter is manifest in nonideal contact between two media and is 
equal to the following (if there are no heat sources at the boundary): R t = AUb/q = i/~. 

Adoption of the ETA makes it possible to achieve several goals: i) experimentally model 
different media with a thermal memory by means of a two-conductor line (with input and out- 
put resistances at the ends of the line), as well as experimentally model physical heat pro- 
pagation processes taking place in the media; 2) apply the approach, method, and results from 
analysis of the propagation of electromagnetic waves in a two-conductor line to heat propa- 
gation processes. Thus, the ETA makes it possible to apply common wave properties (reflec- 
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tion, linear superposition, interference, etc.) to heat-propagation processes in the most 
common media with a thermal memory. Meanwhile, the same concepts are also applicable to 
Fourier media (if it is assumed that they are a limiting case of Maxwell media with w § ~, 
where w is the rate of propagation of the front of the thermal wave). The ETA allows us to 
use formulations of certain problems in thermophysics that are analogous to wave formulations. 
For example, it is possible to formulate the problem of matching the thermal impedances of 
different media so as to make fullest use of the energy of a travelling thermal wave. Another 
example would be the problem of matching two thermal media with different impedances by means 
of a transitional matching layer. It was shown in [22, 23] that given the appropriate mech- 
anism for pumping energy into the medium (by the action of external fields), a thermal medium 
with a memory may be weakly absorbing or even intensifying. Formally, such a medium is de- 
scribed by inclusion of the volumetric distribution of the energy source, proportional to 
temperature. The use of such media may lead to the development of different wave-based ther" 
mophysical devices that have optical and radiophysical analogs. Below, we examine a thermal 
system which is an analog of an optical amplifier (laser). 

Thermal Amplifier in Media with a Memory. The amplifier is modeled by a system of two 
bodies (an infinite plate x e [0, s and a semiinfinite body x e [s ~)). Ideal thermal con- 
tact exists between the bodies. The mathematical model of a problem for such a system is 
formulated as follows. We assign GRs [ii, 12] [with their RFs Xi(t), ci(t)] and internal- 
energy balance equations (3)-(3a) for each body. Here, we assume that the first medium con- 
tains a volumetric source proportional to the temperature o I = rlu , while in the second me- 
dium 02 = 0. The nonambiguity conditions include the zero initial conditions ui(x, 0) = 0 
(in Maxwell media, we additionally assume that 8ui(x, 0)/St = 0). The usual conditions are 
assigned at the boundaries (x = 0; s ~): 

u~ (o, t) = Uo (t); u~ (1, t) = u~ q,  t); q~ (t, t) = q~ q, t); 
( 7 )  

u~ ( ~ ,  t) = q~ ( ~ ,  ~) = o. 

To solve the above problem in the first medium (plate), we use the general form (2), (5) of 
the transformation of planar one-dimensional problems: 

U~ (x, p) = U~ (0, p) ch h~ (p) x - -  Q1 C 0, p) Z1 (p) sh h~ (p) x; 

Q~ (x, p) = Q~ (0, p) ch h~ (p) x - -  ZF'  (p) U~ (0, p) sh/~1 (P) x; 

h~ (p) = Ko~ (p)l-V~; 

Ko~ (p) = ~ /  p2C~ ( p ) -  re . Z~ (p) -- 1 S~ (p__) . Sl  (p) = 

pA~ (p) ' ?x Ko~ (p) ' pA~ (p) 

(8) 

In the second medium, we use the general form of the transformation of problems for infinite 
bodies [22] with allowance for the condition at infinity: 

U2 (x, p) = U~ (l, p) exp [ - -  h~ (p) (x - -  I)1; h~ (p) = Ko2 (p ) / ] / ~ ;  

Q~ (x, p) = Q2 (l, p) exp [-- h2 (p) (x - -  I)1; Z2 (p) = S~ (p)/?~ Ko~ (p); (9)  

V "  pC~ (p). s~ (p) - 1 U~(I, p ) = Q 2 ( l ,  p) Z2(p); K o 2 ( p ) = _ _  A 2(p) ' pA~(p)" 

Nonambiguity condition (7) leads to the following expressions for the boundary functions: 

U~(O, p )=Uo(p ) ;  b'~(l, p ) =  Uo(p) ; Q2(l, p ) - U ~ ( l '  p). 
Do (p) Z~ (p) ' 

u0(p) z (p__L Chhl(p) i; Q~ (o, p) - Do (p) Zl (p) Z.~ (p) 

Do (p) = ch h~ (p) l + Z~ (p) sh h~ (p) l. 
Z~ (p) 

(io) 
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In the problem formulated here, we are interested in the case of maximum heat transfer to the 
second medium. We can solve this problem by the method employed in [26]: expand the hyper- 
bolic functions in (8) and (i0) into series in the exponents; introduce partial thermal waves 
(transmitted and reflected) and reflection coefficients at the boundaries x = 0, s make a 
detailed analysis of different cases of the solution that is obtained. The solution of the 
problem can be simplified considerably by using the ETA. It is known from circuit theory 
(and electrodynamics) that in the case of the equality of the impedances of two lines (media) 

Z~(p) = z~(p) ( l l )  

a wave of electric current (electromagnetic wave) is propagated without reflection at the 
boundary x = s of the lines (media). This corresponds to the maximum transfer of energy by 
the wave to the second line (medium). The use of condition (ii) for the thermal impedances 
of the media in Eqs. (8-10) leads to the solution 

U~ (x, p) ---- Uo (p) exp ( - -  h~ (p) x); Q~ (x, p) = UI (x, p)/Z~ (p); 

V~ (l, p) = U2 (l, p) = Uo (p) exp (- -  h~ (p)/); 

U~ (x, p) = Uo (P) exp [ - -  lh (p) l - -  h~ (p) (x - - / ) ] ;  Q2 (x, p) = U~ (x, p)/Z~ (p), 

(12) 

which describes the propagation of a thermal wave without reflection. Condition (ii) depends 
both on the equilibrium thermophysical characteristics of the medium and on the properties 
of its memory. Exact condition (ii) for matching media should be satisfied for all p in the 
right half-plane of transforms. In practice, approximate matching is obtained using the 
available numerical parameters of the problem. Here, by making the substitution p = i~, we 
change over to spectral representation of the signal and we use the free parameters of thermal 
media to approximately satisfy (ii) in the given frequency range - which is determined by the 
spectral composition of the input signal. The results apply to all media with a thermal mem- 
ory. The special case of a normal Fourier medium at r0 = 0 was examined in [13]. 

Let us examine the most important case - that of a harmonic heating u0(t) = exp (i~t) in 
media with matched impedances. Considering that U0(p) = (p - im) -I and that there is one 
pole p = im in returning from U2(x, p) in (12) to the originals, we obtain 

u 2 (x, l) = q~ (ko) exp [ - -  ~2 @) (x --/)1 exp [io~ (t - -  (x - -  l)/w2 (@)l; 

qb (i@ = .41 (co) exp [iq) 1 @)1; A1 (co) = exp [ - -  ~1 (o~) l]; O1 @) = --~ol/wl (co); 

w ~ @ )  = o~/Imhm(im); ~(co)  = Rehm(/co), rn = 1, 2. 

Here, $m(W), hm(m) are the attenuation factor and the rate of propagation of the thermal 
wave (TW~ in each medium (see [23]). The functions Al(m) and ~1(m) are the amplitude-fre- 
quency and phase-frequency characteristics (AFC and PFC) of the system with respect to tem- 
perature. The AFC shows the ratio of the amplitude of temperature at the boundary x = s to 
the amplitude of the inlet temperature; the PFC shows the phase shift between these values. 
The expressions $l and ml fully agree with the analogous expressions in [23]. Thus, the con- 
ditions for the functioning of the system as a thermal amplifier supplying a load having a 
matched impedance coincide with the conditions examined in [23] for the intensification of 
a thermal wave in a semiinfinite body. The problem of amplification of a broadband thermal 
signal without phase distortions requires the use of the PFC of the thermal system. The ther- 
mal system studied here can be used to measure variable temperature with its preliminary am- 
plification. 

It is intuitively clear that the type of heat transfer that occurs in DMs is determined 
by the model of heat transfer used for the continuous phase. Thus, a DM can be modeled by a 
certain Fourier medium with an infinite rate of heat propagation, which means that the solu- 
tions of heat-transfer problems for DMs should have certain features in common with the solu- 
tions for thermal media of the Fourier type [12, 22, 23, 26, 27]. In particular, the phenom- 
enon of the intensification of a TW at low frequencies (0 < ~ < mcr) may occur in a DM with 
the release of heat both in volumes of the materials and at the boundaries of the phases com- 
prising the heterogeneous medium. Heat may be released as a result of phase transformations, 
chemical reactions, and the use of physical means of pumping energy via external fields (elec- 
trostatic, etc.). Other phenomena related to the effect of memory and heat release in DMs 
were examined in [21, 29]. 
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NOTATION 

H(t), Heaviside unit function, equal to zero at t < 0 and unity at t ~ 0; u, q, U, and 
Q, temperature, heat flux, and their transforms, designated, respectively, by capital letters; 
k0, a0. P0, co, equilibrium values of thermal conductivity, diffusivity, density, and the 
mass heat capacity of the substance; rz, proportionality factor in the internal energy source; 
am, km ~ pm ~ Cm ~ equilibrium values of diffusivity, thermal conductivity, density, and heat 

capacity for the two media (m = i, 2); y = J~m~176 ~ coefficient of thermal activity of the 
media; km(t), Cm(t) , relaxation functions of heat flux and internal energy for the media (m = 
i, 2); Am(P), Cm(P), their Laplace transforms; Zm(p) , hm(p) , impedance and thermal-wave pro- 
pagation factor for media with a memory; K0m(P), correspondence function for media with a 
memory (m = i, 2); t0, Maxwell relaxation time of the heat flux; ~, heat-transfer coefficient; 
em(X, t), volume density of internal energy in the media; em0, initial values of em; o m, vol- 
ume density of internal energy sources; Al(w), r amplitude-frequency and phase-frequency 
characteristics of the system. 
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